

中科院半导体所 半导体材料科学重点实验室

报告内容

四、结论

晶体结构对称性对材料光电性质具有决定性 的影响!

闪锌矿结构的反演不对称

1)体反演不对称 T_d, GaAs, InP

压电效应,非线性光学效应(包括线性电 光效应,或Pockels效应)

但是闪锌矿结构具有旋转反演对称性!

 场致反演不对称 应变exy, [001]电场Ez

闪锌矿结构, GaAs: Ga和As原子的相对移 动使得(110)和(1<u>1</u>0)面 内的Ga-As键不再对 称, C_{2v}点群。

3) 结构反演不对称 半导体界面内在的反演不对称性! AlAs/GaAs 界面 AlAs GaAs (1<u>1</u>0) Ga-As键在 (110)面内 Al-As 键在(110)面内 [001] (110)A1 Ga As 结构反演不对称 [110] [110] [110] C_{2v}点群 [1<u>1</u>0] [1<u>1</u>0] [1<u>1</u>0] $\Delta r=0$ Λr≠0 $\Lambda r=0$

化学键在(001)面内的投影

理想对称的量子阱

量子阱中心为对称 点,具有旋转反演对 称性! [110] 等价于 [110]

界面不完美! → 无旋转反演对称性

T

 C_{2V}

 $\mathbf{C}_{\mathbf{v}}$

闪锌矿半导体材料的反演不对称:

1) BIA: bulk inversion asymmetry,

材料固有的,无法调控

2) FIA: strain and electric field,3) SIA: structural inversion asymmetry

通过外场和结构设计,实现调控

反演不对称会产生怎样的效应?

目标:寻找E_z,e_{xy}等相关的哈密顿量

- $\Gamma_1: S [1];$
- $\Gamma_2: T [xl_x + yl_y + zl_z];$
- Γ_3 : $(U, V) [\sqrt{3}(x^2 y^2), 2z^2 x^2 y^2];$

 Γ_4 : (P,Q,R) [l_x , l_y , l_z]; σ , J, H(磁场), k×E 轴矢量

 Γ_5 : (X, Y, Z) [x, y, z]. k, E(电场), $[e_{yz}, e_{zx}, e_{xy}]$ 极矢量 [$\{j_y j_z\}, \{j_z j_x\}, \{j_x j_y\}$]

 $\{j_x j_y\} = (j_x j_y + j_y j_x)/2$

TABLE I. Multiplication table for the components of the irreducible representations of T_d group. The components are defined in Eq. (4.1). This table is equivalent to that of coupling coefficients in G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, *Properties of Thirty-two Point Groups* (M.I.T., Cambridge, 1963).

s	SS'	TT'	UU' + VV'		PP' + QQ' + RR'		XX' + YY' + ZZ'
Т	ST'		UV' - VU'			PX' + QY' + RZ'	
U	SU'	-TV'	UV' + VU'		$\sqrt{3}(PP' - QQ')$	2RZ' - PX' - QY'	$\sqrt{3}(XX' - YY')$
V	SV'	TU'	UU' - VV'		2RR' - PP' - QQ'	$\sqrt{3}(QY'-PX')$	2ZZ' - XX' - YY'
P	SP'	TX'	$(\sqrt{3}U - V)P'$	$-(\sqrt{3}V+U)X'$	QR' - RQ'	QZ' + RY'	$YZ' - ZY' \mathbf{D} \vee \mathbf{D}$
Q	SQ'	TY'	$=(\sqrt{3}U+V)Q'$	$(\sqrt{3}V - U)Y'$	RP' - PR'	RX' + PZ'	ZX' - XZ'
R	SR'	TZ'	2VR'	2 <i>UZ</i> ′	PQ' = QP'	PY' + QX'	XY' = YX'
X	SX'	TP'	$-(\sqrt{3}V+V)P'$	$(\sqrt{3}U-V)X'$	QR' + RQ'	QZ' = RY'	YZ' + ZY'
Y	SY'	TQ'	$(\sqrt{3}V - U)Q'$	$-(\sqrt{3}U+V)Y'$	RP' + PR'	RX' - PZ'	ZX' + XZ'
Ζ	SZ'	TR'	2UR'	2VZ'	PQ' + QP'	PY' = QX'	XY' + YX'
$(k_{y}^{2}-k_{z}^{2})k_{x}$					$\{\mathbf{j}_{\mathbf{y}}\mathbf{j}_{\mathbf{z}}\}$	$\{\sigma_y \sigma_z\}$	
K	= (1	$k_z^2 - k_z$	$k_{\rm x}^2)k_{\rm y}$		$\{\mathbf{j}_{\mathbf{z}}\mathbf{j}_{\mathbf{x}}\}$	$\{\sigma_z \sigma_x\}$	
$(k_{x}^{2}-k_{y}^{2})k_{z}$					$\{\mathbf{j}_{\mathbf{x}}\mathbf{j}_{\mathbf{y}}\}$	$\{\sigma_x \sigma_y\}$	

导带电子

 H'= aE_z(σ_xk_y-σ_yk_x) Rashba 自旋轨道耦合;

2) H'=bκ·σ=β(σ_xk_x-σ_yk_y)一量子阱 Dresshauss自旋轨道耦合 轴矢量点乘

 $(\mathbf{k} \times \mathbf{E}) \cdot \boldsymbol{\sigma}$

κσ

以上 E_z 均可以用 e_{xy} , P $\delta(z-z_0)$ 代替

E_z均可以用 e_{xv}, Pδ(z-z₀)代替

Rashba 和Dresshauss 自旋轨道耦合 H'很复杂

电子空穴交换作用

H'=dJ·σ +空穴混合→激子精细结构

能带结构和波函数的特殊变化 空穴混合(hole mixing) 自旋分裂(spin splitting)

可观察的物理效应 平面光学各向异性 激子精细结构 自旋光电流

光子偏振和电子自旋 •内在关联、相互转化 •信息载体的新自由度

hole mixing effect

量子阱中K_|=0处空穴波函数:无空穴混合

$$H_{hh}(z)\phi_{hh}(z) = E\phi_{hh}(z) \quad for \quad |3/2, \pm 3/2\rangle$$

$$H_{lh}(z)\phi_{lh}(z) = E\phi_{lh}(z) \quad for \quad |3/2, \pm 1/2\rangle$$

$$\Psi_{hh} = \phi_{nhh}(z) | 3/2, \pm 3/2 \rangle$$
 二重简并(自旋简并)

 $\Psi_{lh} = \phi_{mlh}(z) | 3/2, \pm 1/2 \rangle$
 轻重空穴无耦合

量子阱中K_{||}=0处空穴波函数:有空穴混合

$$H = H_0 + F(z) \{ \hat{J}_x \hat{J}_y \}$$

$$e_{xy}, E_z, P\delta(z-z_0)$$

$$H(z) = \begin{pmatrix} H_{hh} & iF(z) & 0 & 0 \\ -iF(z) & H_{hh} & 0 & 0 \\ 0 & 0 & H_{hh} & iF(z) \\ 0 & 0 & -iF(z) & H_{hh} \end{pmatrix}$$

耦合的薛定谔方程: $H_{hh}(z)\phi_{hh}(z) + iF(z)\phi_{lh}(z) = E\phi_{hh}(z)$ $H_{lh}(z)\phi_{lh}(z) - iF(z)\phi_{hh}(z) = E\phi_{lh}(z)$

空穴波函数发生混合

$$\Psi_{nh} = \phi_{nh}(z) |3/2, \quad \pm 3/2 \rangle + i\alpha \phi_{ml}(z) |3/2, \quad \pm 1/2 \rangle$$

$$\Psi_{mh} = \phi_{ml}(z) |3/2, \quad \pm 1/2 \rangle + i\alpha \phi_{nh}(z) |3/2, \quad \pm 3/2 \rangle$$

能级移动
$$\alpha^2 |E_{nh} - E_{ml}|/2$$
 非常小,可以忽略
 $\alpha = \frac{\int \phi_{nh}(z)F(z)\phi_{ml}(z)dz}{|E_{nh} - E_{ml}|}$ 1%量级

重空穴波函数中具有轻空穴的分量 轻空穴波函数中具有重空穴的分量

空穴混合的效应(闪锌矿结构)

- 1) 平面内光学各向异性
- 2) 激子精细结构: 平面光学各向异性的特例
- 3) 空穴自旋驰豫
- 4) 其它

波函数在XY平面内的投影

$$|3/2, 3/2\rangle =$$

 $\frac{1}{\sqrt{2}}(X+iY)\uparrow$

$$|3/2, -1/2\rangle =$$

 $\frac{1}{\sqrt{6}} [(X - iY)\uparrow +2Z\downarrow]$

传统的偏振光谱: 旋转偏振片或者样品 两次测量

$$P = \frac{I_x - I_y}{I_x + I_y}$$

灵敏度有限: 5% 系统稳定性影响严重!

偏振透射谱

反射差分谱: reflectance difference spectroscopy (RDS)

将RDS应用于半导体界面、量子阱和纳米结构等研究,量子阱和纳米结构量子跃迁RDS研究的SCI论文几乎全部来自我们。

GaAs/AlGaAs ——阱宽,应变,主动控制,激子精细结构 InGaAs/GaAs——In原子偏析、应变等 InGaAs/InP—— 界面化学键,原子互混 GaNAs/GaAs,GeSi/Si InAs/GaAs量子点的浸润层演化(InAs超薄量子阱)

量子阱界面相关的平面光学各向异性

Phys. Rev. B 66, 19532120 (2002)

光学各向异性来自界面不对称——界面各向异性的岛状起伏。 偏振度小于1.5%:用普通普通光学

轻重空穴混合的程度取决于空穴混合能 与空穴能级间距之比(微扰论):

 $\langle 1H | F(z) | 1L \rangle$ ΛE

量子阱宽度增大

 $\Delta E \propto 1/w^2$

 $\langle 1H | F(z) | 1L \rangle$ 几乎不变: e_{xy}, E_z 近乎指数减小:界面

应变引起的平面光学各向异性

应力装置

GaAs/AlGaAs量子阱的RDS谱

随着阱宽增大,界面导致的 光学各向异性信号是减小 的,而应力导致的信号则是 增加!

理论计算与实验结果吻合很好,并 确定出重要的界面势参数

不同阱宽GaAs/AlGaAs量子阱的 RDS谱

GaAs/AlGaAs量子阱

☑ 指导新型量子器件设计

电子空穴交换作用+ C_{2V} 反演不对称 \rightarrow 激子分裂

$$H' = a\vec{J}\vec{\sigma} + F(z)\{J_xJ_y\}$$

如果只考虑1H和1L的空穴混合:

☑ 当量子阱的对称性降低到C_{2V}时,由于电子空 穴交换作用,简并的激子会劈裂成两个能级。

☑ 激子分裂能很小(微电子伏量级),对光子纠 缠对形成(量子信息)有重要影响!

☑测量困难: 激子光谱线宽远大于激子劈裂能量

量子拍和ODMR: II型GaAs/AlAs量子阱 极低温,强磁场

Ⅰ型量子阱,从未有实验报道!

RDS: 测量激子分裂的新方法

我们证明了,由于激子分裂,激子各向异性介电函数 $\Delta \epsilon_s$ 与激子介电函数 ϵ_s 具有以下关系:

$$\Delta \varepsilon_s = -\Delta E_s \frac{d\varepsilon_s}{dE} + 2P_s \varepsilon_s$$

$$2\operatorname{Re}\left\{\frac{\Delta r}{r}\right\} = -\Delta E_{s} \frac{d\ln R}{dE} + P_{s} \frac{\Delta R}{R}$$

利用RDS,通过光谱拟合,直接测量出激子分裂能∆E_s 和激子偏振度P_s

新方法的特点:液氮温度测量,无需磁场! 型量子阱激子分裂

一个例子: 5nm-GaAs/Al_{0.36}Ga_{0.64}As

应力能否调节激子分裂?

低温应力装置: 压电陶瓷

80K不同应变下的反射谱和RDS谱

常规反射谱

应力作用下的RDS

QW介电函数

各向异性的QW介电函数

$$\Delta \varepsilon_s = -\Delta E_s \frac{d\varepsilon_s}{dE} + 2P_s \varepsilon_s$$

A Settionducing

激子分裂能随应变线性变化

激子偏振度随应变线性变化

电子空穴交换能基本不变

空穴耦合能反应各向异性 随应变线性变化

量子点(人工原子):

电子三维受限,产生分立能级

基础研究:

精细结构、相干控制、 近藤效应、库仑阻塞、 腔电动力学 等等

新型器件:

QD 激光器: 低阈值电流密度、弱的温度依赖关系

- QD 红外探测器: 正入射 QD 单光子光源: 可控发射
- QD 量子比特: 容易集成

生长初期,二维层状生长,称为浸润层(WL)。浸润 层厚度超过一个临界厚度时,生长模式转变成三维 (3D)生长!

不同量子点之间载流子再分布的通道

理论预言:WL对QD激光器的调制速度有重要影响

Appl.Phys. Lett. 77, 3325(2000)

• XSTM

InAs WLs can be directly characterized by cross-sectional scanning tunneling microscopy.

APL. 87, 111903 2005

问题:样品必须在真空中解理和测量!

Photoluminescence

Usually hh is observable before QD formation

Photoreflectance

Both hh and lh are observed, but interfered with E_g signal

Appl. Phys. Lett. 73, 3268(1998)

WL系统研究缺乏!

用RDS系统研究了InAs/GaAs QD浸润层的演化

InAs QD浸润层——超薄InAs量子阱

•In原子偏析+各向异性应变 → 平面光学各向异性, RDS技术可用;

•GaAs带边激子通常不具有平面光学各向异性, 避免了对InAs浸润层信号的干扰;

•RDS不但给出跃迁能量,还可给出各向异性强弱 信息,后者与浸润层中In原子平面分布——In原 子的运动——密切相关。

AFM images

FM growth SK growth

$2 \times 2 \,\mu m$

Ripening

InAs: 530°C, 0.008ML/s

AFM results

9-16: Huge dots 2 times larger in sizes

典型的RDS结果 10th

Experimental Smoothed 1.0 Extracted ρ (10⁻³) .H 0.5 0.0 (arb. unit) ΗH 0 \sim 5 -2 Sample 10 \mathbf{d}^2 -3 860 880 900 920 940 960 840 Wavlength (nm)

WL as a thin QW

RD spectra varying with sample numbers

2) 激子效应: binding energies for hh and lh

3) 应变效应

$$E_{hh}, E_{lh} \implies t_{WL}, l$$

 R_2

没人进行过相关实验研究

Segregation coefficient varies linearly with the InAs amount in WL before SK growth: **strain as driven force!**

生长温度和2D-3D转变厚度的关系?

衬底不旋转 Growth Temp, Vg <t>, 2.0ML 490°C 0.1 ML/sInAs 500°C 0.1 ML/s2.0ML 100nm-GaAs 600°C, 0.7um/h 510°C 0.1 ML/s1.9ML InAs 520°C 0.1 ML/s2.0ML 600°C, 0.7um/h 200nm-GaAs 0.1 ML/s530°C 2.0ML SI-GaAs 2.0ML 0.1 ML/s540°C 1 2 3 -----15 16

2D-3D 转变标志: 3D-InAs岛密度快速增加

浸润层轻空穴相关跃迁能量的变化

先线性减小: InAs增加 后偏离线性减小, 趋近平衡值: InAs停止增加并趋 近饱和值

2D-3D 生长转变:

偏离线性减小之处

浸润层平面光学各向异性的演化

2D-3D生长临界厚度随生长温度的变化

空间反演不对称的自旋分裂

自旋轨道(SO)相互作用

$$H_{SO} = -\frac{\hbar}{4m_0^2c^2} \boldsymbol{\sigma} \cdot \boldsymbol{p} \times (\nabla V_0)$$
 V₀: 原子势

Lorentz变换:在电子静止坐标系中,以-V运动的电场E产生了一个有效磁场B

$$\mathbf{B} = -\frac{\gamma}{c^2} \mathbf{v} \times \mathbf{E}$$

ity of states in FM1

Density of states in FM2

自旋晶体管: SO耦合导致自旋进动

S. Datta and B. Das, Appl. Phys. Lett. 56, 665(1990)

Y方向上的电场: σ_z, p_x

Z方向具有结构反演不对称: 电场, 应变, 不对称的限制势

纤锌矿结构

BIA哈密顿量与SIA的 相同! 各向同性的自旋分裂

自旋分裂的观察:

 (1) 零场分裂, SdH振荡
 (2) 本征自旋霍尔效应
 (逆自旋霍尔效应)
 (道自旋霍尔效应)

In_xGa_{1-x}As/InP调制掺杂2DEG的低温输运

PRB55R1958(1997)

可通过栅压来控制自旋分裂的大小

Spin Hall effect

有人认为是本征的: Rashba 效应

PRL92P126603(2004)

$2\ \mu m$ n-GaAs on AlGaAs

Science306-1910-2004

自旋光电流效应 Circular photogalvanic effect

自旋分裂和光学选择定则导致kx+和kx-态不平衡占据,产生零偏压下的自旋极化光电流。

- •电流方向取决于圆偏振光方向
- •正入射时电流为零

GaN/AlGaN 二维电子气(2DEG)的CPGE研究

与北大物理学院沈波教授合作

汤一乔:2006年底,APL 贺小伟:2007年,APL,PRL 尹春明,张琦:正在进行中,有趣的结果

GaAs/AlGaAs 二维电子气(2DEG)、InN、InAs 量子线、InAs量子点结构等的CPGE研究

中科院半导体所

GaN 2DEG样品和CPGE实验装置

圆偏振光: 1060 nm (1.1 eV)

CPGE setup

旋转1/4波片(相位角 φ),改变入射光的偏振状态 $j_{\lambda} = j_c \sin 2\varphi + j_L \sin 2\varphi \cos 2\varphi + j_0$

Y.Q.Tang(汤一乔), et al, APL, 91, 071920 (2007)

SdH 振荡和CPGE光电流的比较

Y.Q.Tang (汤一乔), et al, APL, 91, 071920 (2007)

SOC constant of BIA and SIA terms in wurtzite structure (GaN-based)

• **BIA:**
$$H_B = \alpha_b (k_x \sigma^y - k_y \sigma^x)$$

• **SIA:**
$$H_s = \alpha_s (k_x \sigma^y - k_y \sigma^x)$$

$$H_B$$
, $H_S \sim k$, Rashba terms

$$E(k) = \frac{\hbar}{2m^*}k^2 \pm \alpha k$$

SOC constant of BIA and SIA terms in wurtzite structure (GaN-based)

如何确定BIA和SIA自旋轨道耦合系数的相对大小?

$$\alpha = \frac{\hbar^2 eE}{4m^* E_g}$$

 $\alpha_{S} \propto E_{built-in}$

AlGaN/GaN异质结:极强的极化效应 极化电场:~MV/cm

应变调制CPGE → 自旋轨道耦合系数的信息

Experimental setup for uniaxial strain

Y方向受张应变:

$$\varepsilon_{yy} = \frac{3hJ_0}{2a^2}$$

Z方向受压应变:

$$\varepsilon_{zz} = -\frac{C_{12}}{C_{13}}\varepsilon_{yy}$$

CPGE current as a function of the additional uniaxial strain

CPGE信号随外加应变线性增加, 2.2x10⁻³的张应变可使信号 增加 18.6%。

X.W.He(贺小伟), et al, APL, 91, 071912 (2007)

Ratio of SIA and BIA SOC constants

$$\alpha_{s} \propto E_{built-in}$$

$$j_{y}(\varepsilon_{yy}) = j_{b}^{0} + j_{s}^{0} + k_{s}\varepsilon_{yy}$$

$$j_{y} = j_{b}^{0} + bE_{0} + bE_{un}(\varepsilon_{yy})$$

$$a_{s} / a_{b} = j_{b}^{0} / j^{0} \approx 13.2$$

X.W.He(贺小伟), et al, APL, 91, 071912 (2007)

CPGE信号:

$$J_{x} = \gamma_{xy} i \left(E \times E^{*} \right)_{y} \implies \sin \phi$$

正入射时CPGE 等于零

[1-10] 9220

InAs量子线CPGE信号随入射角的变化

X.W.He(贺小伟), et al, PRL, 101, 147402 (2008)

不同入射角时电流撒随光斑 位置的变化

插图: CPGE电流由一个对称分量和反对称分量构成

X.W.He(贺小伟), et al, PRL, 101, 147402 (2008)

Mechanism of the anomalous CPGE

Anomalous CPGE & RSHE

X.W.He, et al, PRL, 101, 147402 (2008)

Anomalous CPGE in GaAs/AlGaAs 2DEG

Anomalous CPGE in GaAs/AlGaAs 2DEG

对称分量(正常CPGE)幅度和反对称分量(反常 CPGE)幅度随入射角的变化规律完全不一样!

结

- 1) 半导体材料中反演不对称会导致空穴混合 和能带自旋分裂;
- 2) 空穴混合导致QW产生平面光学各向异性, 可以用RDS观测得到;不同的反演不对称(电 场、应变、界面)会产生不同的RDS信号;
- 3) 导带的自旋分裂可以通过自旋光电流测
- 量;同时,自旋光电流还可以检测逆自旋霍尔 效应;
- 4) RDS和自旋光电流是非常灵敏的技术!

